Weakly Reflective Submanifolds and Austere Submanifolds
نویسندگان
چکیده
We introduce the notion of a weakly reflective submanifold, which is an austere submanifold with a certain global condition, and study its fundamental properties. Using these, we determine weakly reflective orbits and austere orbits of s-representations.
منابع مشابه
Grassmann Geometries in Infinite Dimensional Homogeneous Spaces and an Application to Reflective Submanifolds
Let U be a real form of a complex semisimple Lie group, and τ , σ, a pair of commuting involutions on U . This data corresponds to a reflective submanifold of a symmetric space, U/K. We define an associated integrable system, and describe how to produce solutions from curved flats. The solutions are shown to correspond to various special submanifolds, depending on which homogeneous space U/L on...
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملUmbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms
We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...
متن کاملContact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form
In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.
متن کاملIsotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کامل